import pandas as pd import numpy as np # Make numpy values easier to read. np.set_printoptions(precision=3, suppress=True) import tensorflow as tf from tensorflow.keras import layers ecvalve = pd.read_csv( "/home/fferreira/Documents/teste_ecvalve.csv", names=[ "frequency", "state", "pressure", "capacity"]) print("Data shape:", ecvalve.shape) print("Columns:", ecvalve.columns) ecvalve.head() ecvalve_features = ecvalve.copy() ecvalve_labels = ecvalve_features.pop('state') ecvalve_features = np.array(ecvalve_features) ecvalve_model = tf.keras.Sequential([ layers.Dense(64, activation='relu', input_shape=(ecvalve_features.shape[1],)), layers.Dense(32, activation='relu'), # Add another layer layers.Dense(1, activation='sigmoid') # Sigmoid for binary classification ]) ecvalve_model.compile(loss=tf.keras.losses.BinaryCrossentropy(), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy']) ecvalve_model.fit(ecvalve_features, ecvalve_labels, epochs=20) ecvalve_model.save('EcValve_1.h5')