ecvalve/Model.py
2025-09-01 21:43:35 +01:00

31 lines
1.0 KiB
Python

import pandas as pd
import numpy as np
# Make numpy values easier to read.
np.set_printoptions(precision=3, suppress=True)
import tensorflow as tf
from tensorflow.keras import layers
ecvalve = pd.read_csv(
"/home/fferreira/Documents/teste_ecvalve.csv",
names=[ "frequency", "state", "pressure", "capacity"])
print("Data shape:", ecvalve.shape)
print("Columns:", ecvalve.columns)
ecvalve.head()
ecvalve_features = ecvalve.copy()
ecvalve_labels = ecvalve_features.pop('state')
ecvalve_features = np.array(ecvalve_features)
ecvalve_model = tf.keras.Sequential([
layers.Dense(64, activation='relu', input_shape=(ecvalve_features.shape[1],)),
layers.Dense(32, activation='relu'), # Add another layer
layers.Dense(1, activation='sigmoid') # Sigmoid for binary classification
])
ecvalve_model.compile(loss=tf.keras.losses.BinaryCrossentropy(), optimizer=tf.keras.optimizers.Adam(), metrics=['accuracy'])
ecvalve_model.fit(ecvalve_features, ecvalve_labels, epochs=20)
ecvalve_model.save('EcValve_1.h5')